Name of the program:		Postgraduate Certificate program in Applied Statistics					
Department:		Department of Statistics					
Semester:		Semester 1 - 2020					
Course Code:		STA 506 2.0					
Course Name:		Linear Regression Analysis					
Credit Value:		2.0					
Core/Optional		Core					
Hourly Breakdown		Theory	Practical	Independent Learning			
		20	10	70			
Course Aim/Intended Learni		ing Outcomes:					
	Formulate a linear regression model.						
	Define model assumptions.						
	Explain how the method of least squares is used to estimate the parameters in						
	Analyse residuals to determine whether the regression model is adequately fit						
_	for the data.						
	Validate regression assumptions.						
	Test statistical hypotheses and construct confidence intervals on regression model parameters.						
	Use the regression model to predict a future observation and to construct an appropriate prediction interval for the future observation.						

- □ Use transformations in regression analysis if needed.
- □ Use indicator variables to model qualitative regressors.
- □ Use stepwise regression and other model building techniques to select the appropriate set of variables for a regression model.
- □ Conduct regression analyses using R software.
- □ Interpret results of regression outputs.

Course Content: (Main topics, Sub topics)

Introduction to regression

- Terminologies
- Correlation
- Parametric modelling vs Nonparametric modelling
- Uses of regression

Simple linear regression

- Simple linear regression model
- Least-squares estimation of the parameters

- Model adequacy checking
- Hypothesis testing on the slope and intercept
- Interval estimation
- F-test for significance of regression
- Prediction of new observations
- Regression through origin

Multiple linear regression

- Multiple linear regression model
- Estimation of the model parameters
- Residual analysis
- Test for significance of regression
- Tests on individual regression coefficients
- Extra-sum-of-squares method
- Confidence intervals in multiple regression
- Prediction of new observations

Transformation of variables

- Variance-stabilizing transformations
- Transformations to linearize the model
- Analytical methods for selecting transformations

Lack of fit of regression model

- Pure error
- Model-independent measures of pure error
- Lack-of-fit test

Weighting to correct model inadequacies

- Generalized least squares
- Weighted least squares

Diagnostics for leverage and influence

- Leverage
- Measures of influence
- Treatment of influential observations

Regression with qualitative variables

- Dummy variables
- Interaction term involving dummy variables

Variable selection procedures

- All possible regression
- Forward selection procedure
- Backward elimination procedure
- Stepwise method

Multicollinearity

- Multicollinearity diagnostics
- Treatment for dealing with multicollinearity

Bootstrapping in regression

• Bootstrap sampling in regression

Teaching /Learning Methods: Lectures and Student-centered teaching-learning methods **Mode of Delivery:**

All lectures will be delivered using online teaching methods. Discussion/practical sessions and mid/final exams will be held in the University.

Semester Schedule for the course:

Week 1-4: Lectures (online)

Week 5-6: Discussion/practical (in class)

Week 7: Mid exam (in class)

Week 8-12: Lectures (online)

Week 13-14: Discussion/practical (in class)

Week 15: Revision (in class)

Week 16: Study leave

Week 17-18: Final exam (in class)

Detailed schedule is available here:

https://thiyanga.netlify.app/courses/regression2020/contentreg/

Assessment Strategy:								
Continuous Assessment			Final Assessment					
	30%		70%					
quizzes %, mid-term %, other % (specify)			Theory (%)	Practical (%)	Other (%) (specify)			
0%	100%	0%	90%	10%	0%			
D. (dia Nationale							

References/Reading Materials:

D. Montgomery and E. Peck, Introduction to Linear Regression Analysis, Wiley, 2012 ISBN: 978-0-470-54281-1

Michael Kutner, Christoper Nachtsheim, John Neter, William Li, Applied Linear Statistical Models, Wiley ISBN-13: 978-0073108742

Course website: https://thiyanga.netlify.app/courses/regression2020/