Name of the program:	MSc program in	MSc program in Applied Statistics					
Department:	Department of S	Department of Statistics					
Semester:	Semester 1	Semester 1					
Year:	2020	2020					
Course Code:	STA 517 3.0	STA 517 3.0					
Course Name:	Programming ar	Programming and Statistical Computing with R					
Credit Value:	3.0	3.0					
Core/Optional	Core	Core					
Hourly Breakdown	Theory	Practical	Independent Learning				
	15	30	105				
Course Aim/Intended Learning Outcomes:							

Course Aim/Intended Learning Outcomes:

At the completion of this course student will be able to

Ш	Navigate the R integrated development environment (IDE) R Studio.
	Execute basic arithmetic operations in R.
	Define data classes, object attributes, data structures in R.
	Write user-defined functions to solve a given problem in R.
	Solve fundamental error problems and bugs in R programs.
	Describe the principles of the tidyverse programming.
	Use the tidyverse packages in data science workflow.
	Perform data wrangling with R.
	Create data graphics using ggplot2 package.
	Select effective visualisations to understand relationships between variables.
	Perform functional programming with R.
	Generate data from a given distribution.

☐ Use statistical simulation for estimation and hypotheses testing.

Course Content: (Main topics, Sub topics)

R programming basics

- Introduction to R and Rstudio
- Setting a working directory
- Variable assignment
- Objects in R
- Installing packages

Data structures

- Matrices, Arrays, List, Data frames, Factors
- Sub-setting

Mathematical and statistical functions in R

- Logical operators
- Matrix operations
- Probability distribution functions

Writing functions in R

- Main components of a function
- Control structures
- Debugging functions

Programming with the tidyverse

- Data import and export
- Data wrangling
- Data visualization
- Statistical modelling and functional programming in R
- · Dynamic reproducible reporting

Statistical simulations

- Methods of generating random numbers
- Monte Carlo methods in inference
- Bootstrap and Jackknife

Teaching /Learning Methods: Lectures and student-centered teaching learning methods **Mode of Delivery:**

All lectures will be delivered using online teaching methods till the university grants permission to conduct face-to-face lectures for postgraduate students.

Assessment Strategy:

Continuous Assessment	Final Assessment		
30%	70%		
quizzes %, mid-term %, other % (specify)	Theory (%)	Practical (%)	Other (%)(specify)
100%	10%	90%	0%

References/Reading Materials:

Hadley Wickham, Garrett Grolemud, The R for Data Science, O'REILLY

Garrett Grolemud, Hands-On Programming with R, O'REILLY

Maria L. Rizzo, Statistical computing with R, Chapman & Hall

Course website: https://thiyanga.netlify.app/courses/rmsc2020/

Lecturer-in-charge: Dr Thiyanga S Talagala