Hypotheses testing

Question 1

A national research institute in Sri Lanka concludes that Sri Lankans watch television on average 25 hours per week. It seems likely that graduate students do not watch nearly this much television per week. To test this, the following data were gathered from a random sample of 50 graduate students.

```
tvhour <- c(24, 20, 29.3, 25.1, 30.6, 34.6, 30.0, 39.0, 33.7, 31.6,
    25.9, 34.4, 26.9, 23.0, 31.1, 29.3, 34.5, 35.1, 31.2, 33.2,
    30.2, 36.4, 37.5, 27.6, 24.6, 23.9, 27.0, 29.5, 30.1, 29.6,
    27.3, 31.2, 32.5, 25.7, 30.1, 24.2, 24.1, 26.4, 31.0, 20.7,
    33.5, 32.2, 34.7, 32.6, 33.5, 32.7, 25.6, 31.1, 32.9, 25.9)
```

i. State the appropriate null and alternative hypothesis.
ii. Perform an analysis to test the hypothesis in (i).

Question 2

The following data (in litres) which were selected randomly from a normally distributed population of values, represent measurements of a bottle content that is supposed to contain, on average 5 L .

```
bottle.content <- c(5.1, 5.4, 5.3, 5.2, 5.5, 5.6, 5.4, 5.3, 5.4, 5.2,
    5.8, 5.2, 5.2, 5.3, 5.1, 5.3, 5.4, 5.5, 5.5, 5.7)
```

Use these data and $\alpha=0.01$ to test the hypothesis that the content average 5 L .

Question 3

Use the following data to construct $80 \%, 90 \%$ and 95% confidence intervals to estimate μ.

```
[1] 103.4 102.7 90.1 89.8 74.8 106.5 108.5 97.9 115.8 101.1 
[13] 110.8 96.7 98.9 116.2 115.3 72.7 79.4 100.5
```

Plot all confidence intervals on a single graph plane.

Question 4

A mathematics teacher gives their students a calculus pretest on the first day of class, and a similar test towards the end of the course. The results are shown below.

before	after
72	65
57	91
71	67
64	66
55	85
60	60
67	97
65	72

before	after
84	54
64	65
56	70
60	75
65	75
69	70
75	72
67	78
74	75
81	90
80	85
71	76
68	65
70	83

Determine whether the students performed significantly better on the post test, using $\alpha=0.05$

Question 5

Use heights from alr3 package.

```
library(alr3)
data(heights)
head(heights) # First 6 rows of the data frame
```

 Mheight Dheight
 $1 \quad 59.7 \quad 55.1$
258.256 .5
$3 \quad 60.6 \quad 56.0$
$4 \quad 60.7 \quad 56.8$
$5 \quad 61.8 \quad 56.0$
$6 \quad 55.5 \quad 57.9$

Test if there is a statistically significant correlation between mothers' height and daughters' height.

Question 6

Use penguins dataset in palmerpenguins. You can use the following code to remove missing cases.

```
library(palmerpenguins)
library(tidyverse)
library(magrittr)
new_penguins <- penguins %>%
    filter(complete.cases(flipper_length_mm, body_mass_g, species, sex))
head(new_penguins)
```

\# A tibble: 6×7
species island bill_length_mm bill_depth_mm flipper_length_~ body_mass_g sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>
1 Adelie Torge~ $39.1 \quad 18.7 \quad 181 \quad 3750$ male

2 Adelie	Torge~	39.5	17.4	186
3 Adelie	Torge	40.3	18	3800 fema~
4 Adelie	Torge	36.7	19.3	195
5 Adelie	Torge	39.3	20.6	193
6 Adelie Torge \sim	38.9	17.8	190	3450 fema~ \sim
fema \sim	181	3650 male		
fema~				

a)

Test if there is statistically significant differences in
i. flipper length
ii. body mass
iii. bill_length
iv. bill_depth
between male penguins and female penguins.
b)

Test if there is statistically significant differences in
i. flipper length
ii. body mass
iii. bill_length
iv. bill_depth
between species types.

