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Example 1

Find the equivalence classes.
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
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Theorem

The relation of communication partitions the state space into
mutually exclusive and exhaustive classes. (The states in a
given class communicate with each other. But states in
different classes do not communicate with each other.)
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Definition

Let fi denote the probability that, starting in state i, the
process will ever re-enters state i, i.e,

fi = P(Xn = i for some n ≥ 1|X0 = i)
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Example 2

Consider the Markov chain consisting of the states 0, 1, 2, 3
with the transition probability matrix,

P=


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
Find f0, f1, f2, f3.
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Recurrent and transient states

Let fi be the probability that, starting in state i, the process
will ever re-enter state i. State i is said to be recurrent if fi = 1
and transient if fi < 1.
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Example 3

Consider the Markov chain consisting of the states 0,1,2 with
the transition probability matrix

P=
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
Determine which states are transient and which are recurrent.
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Example 4

Consider the Markov chain consisting of the states 0, 1, 2, 3
with the transition probability matrix

P=


0 0 0 1
0 0 0 1
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
Determine which states are transient and which are recurrent.
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Example 5

Consider the Markov chain consisting of the states 0, 1, 2, 3, 4
with the transition probability matrix

P=


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
Determine which states are transient and which are recurrent.
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Theorem

if state i is recurrent then, starting in state i, the process will
re-enter state i again and again and again—in fact, infinitely
often.
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Theorem

For any state i, let fi denote the probability that, starting in
state i, the process will ever re-enter state i. If state i is
transient then, starting in state i, the number of time periods
that the process will be in state i has a geometric distribution
with finite mean 1

1−fi .

Proof: In-class
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Theorem

State i is

recurrent if
∞∑

n=1
Pn

ii = ∞,

transient if
∞∑

n=1
Pn

ii < ∞,

Proof: In-class
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Corollary 1

If state i is recurrent, and state i communicates with state j
(i ↔ j), then state j is recurrent.

Proof: In-class
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Corollary 2

In a Markov Chain with a finite number of states not all of the
states can be transient (There should be at least one recurrent
state).
Proof: In-class
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Corollary 3

If one state in an equivalent class is transient, then all other
states in that class are also transient.

Proof: In-class
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Corollary 4

Not all states in a finite Markov chain can be transient. This
leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.
Proof: In-class
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