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Goals

1. Explain the Markov property in the continuous-time
stochastic processes.

2. Explain the difference between continuous time and
discrete time Markov chains.

3. Learn how to apply continuous Markov chains for
modelling stochastic processes.
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Stochastic Processes

parameter = time
source: https://towardsdatascience.com/
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Continuous Parameter Markov Chains

Suppose that we have a continuous-time
(continuous-parameter) stochastic process {N(t); t ≥ 0}
taking on values in the set of nonnegative integers. The
process {N(t); t ≥ 0} is called a continuous parameter
Markov chain if for all u, v, w > 0 such that 0 ≤ u < v and
nonnegative integers i, j, k,

P[N(v + w) = k|N(v) = j, N(u) = i, 0 ≤ u < v]
= P[N(v + w) = k|N(v) = j].
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Continuous Parameter Markov Chains (cont.)

In other words, a continuous-time Markov chain is a stochastic
process having the Markovian property that the conditional
distribution of the future N(v + w) given the present N(v) and
the past N(u), 0 ≤ u < s, depends only on the present and is
independent of the past.

If, in addition,

P[N(v + w) = k|N(v) = j]

is independent of v, then the continuous parameter Markov
chain is said to have stationary or homogeneous transition
probabilities.
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Discrete Time versus Continuous Time (In class)

diagram

DTMC: Jump at discrete times: 1, 2, 3, …
CTMC: Jump can occur at any time t ≥ 0. 6



Transition Probabilities

Recap: Pn
ij - transition probability of discrete Markov chains

Transition probability of continuous Markov chains
pij(t, s) = P[N(t) = j|N(s) = i], s < t.

• If the transition probabilities do not explicitly depend on s
or t but only depend on the length of the time interval
t − s, they are called stationary or homogeneous.

• Otherwise, they are nonstationary or nonhomogeneous.
• We’ll assume the transition probabilities are stationary

(unless stated otherwise).
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Homogeneous transition probabilities

pjk(w) = P[N(v + w) = k|N(v) = j]

pjk(w) represents the probability that the process presently in
state j will be in start k a time w later.
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Poisson Process

Let N(t) be the total number of events that have occurred up
to time t. Then, the stochastic process {N(t); t ≥ 0} is said to
be a Poisson process with rate λ if

1. N(0) = 0,
2. The process has independent increments,
3. For any t ≥ 0 and h → 0+,

P[N(t + h) − N(t) = k] =


λh + o(h), k=1
o(h), k ≥ 2
1 − λh + o(h), k = 0

• The function f(.) is said to be o(h) if limh→0
f(h)

h = 0.

• The third condition implies that the process has
stationary increments.
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Theorem

Suppose {N(t); t ≥ 0} is a Poisson process with rate λ. Then
{N(t); t ≥ 0} is a Markov process.
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Theorem

Suppose that {N(t); t ≥ 0} is a Poisson process with rate λ.
Then, the number of events in any interval of length t has a
Poisson distribution with mean λt. That is for all s, t ≥ 0,

P[N(t + s) − N(s) = n] = e−λt(λt)n

n!
For a Poisson process with rate λ, the transition probability
pij(t) is given by

pij(t) = e−λt(λt)j−i

(j − i)!
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