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Thinning/ Splitting of a Poisson process

• Thinning or splitting a Poisson process refers to
classifying each event, independently, into one of two
types: type I and type II.

• The arrivals are radioactive emissions and each emitted
particle is either detected (type 1) or missed (type 0) by
a counter.

• The arrivals are customers at a service station and each
customer is classified as either male (type 1) or female
(type 0).

We want to consider the type 1 and type 0 events separately.
Due to this, the new random process is usually referred to as
thinning or splitting the original Poisson process.
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Thinning/ Splitting of a Poisson process - Proposi-
tion

Consider a Poisson Process {N(t); t ≥ 0} having rate λ, and
suppose that each time an event occurs it is classified as either
a type I or type II event. Suppose that each event is classified
as type I event with probability p and a type II event with
probability 1 − p independently of all other events. Let N1(t)
and N2(t) denote respectively the number of type I and type II
events occurring in [0, t]. Then, {N1(t); t ≥ 0} and
{N2(t); t ≥ 0} are both Poisson processes having respective
rate λp and λ(1 − p). Furthermore, the two processes are
independent.
Proof: In-class
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Proof
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Proof
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Proof
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Example 1:

If tourists to area A arrive at a Poisson rate of 10 per day, and
if each tourist is European with probability 0.4, what is the
probability that more than 20 European tourist will arrive to
area A during next week?
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Example 2:

Customers arrive at a bank at the rate of 10 per hour. Each is
either new or existing customer with probability 0.5. Assume
that you know that exactly 10 new customers entered within
some hour (say, 10 to 11am). (a) Compute the probability
that exactly 10 existing customers also entered. (b) Compute
the probability that at least 20 customers have entered.
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Compound Poisson Process

A stochastic process {X(t), t ≥ 0} is said to be a compound
Poisson process if it can be represented as

X(t) =
N(t)∑
i=1

Yi, t ≥ 0

where {N(t), t ≥ 0} is a Poisson process, and {Yi, i ≥ 1} is a
family of independent and identically distributed random
variables that is also independent of {N(t), t ≥ 0}. The X(t) is
said to be a compound Poisson random variable.
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Examples of Compound Poisson Processes

Suppose customers leave a supermarket in accordance with a
Poisson process. If the Yi, the amount spent by the ith
customer, i = 1, 2, ... are independent and identically
distributed, then {X(t), t ≥ 0} is a compound Poisson process
where X(t) denotes the total amount of money spent by time t.
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Examples of Compound Poisson Processes (cont.)

Suppose that buses arrive at a picketing event in accordance
with a Poisson process, and suppose that the numbers of
passengers in each bus are assumed to be independent and
identically distributed. Then [X(t), t ≥ 0] is a compound
Poisson process where X(t) denotes the number of passengers
who have arrived by t. The Yi represents the number of
passengers in the ith bus.
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Examples of Compound Poisson Processes (cont.)

X(t) =
N(t)∑
i=1

Yi, t ≥ 0

If Yi ≡ 1, then X(t) = N(t), and so we have the usual Poisson
process.
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Compound Poisson Process
A stochastic process {X(t), t ≥ 0} is said to be a compound
Poisson process if it can be represented as

X(t) =
N(t)∑
i=1

Yi, t ≥ 0

where {N(t), t ≥ 0} is a Poisson process, and {Yi, i ≥ 1} is a
family of independent and identically distributed random
variables that is also independent of {N(t), t ≥ 0}. The X(t) is
said to be a compound Poisson random variable.

Because X(t) is a compound Poisson variable with Poisson
parameter λt we can show that,

E[X(t)] = λtE(Y1) and Var[X(t)] = λtE[Y2
1].
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Example

Suppose that families migrate to an area at a Poisson rate
lambda = 2 per week. The number of people in each family is
independent and takes on values 1, 2, 3, 4 with respective
probabilities 1/6, 1/3, 1/3, 1/6. Find the expected value and
variance of the number of individuals migrating to this area
during a fixed five week period. (Introduction to Probability
Models by Sheldon M. Ross)
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Non-homogeneous Poisson Process

• Similar to an ordinary Poisson process, except that the
average rate of arrivals is allowed to vary with time.

• Homogeneous Poisson process: constant arrival rate λ.
• Non-Homogeneous Poisson process: time varying arrival

rate λ(t).
• Relaxes the Poisson process assumption of stationary

increments.
• The intensity function λ(t) of a nonhomogeneous Poisson

process can vary with time (deterministic function of t).

For example, the arrival rate of students to the cafeteria is
larger during lunch time compared to, say, 4 p.m.
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Stationary increments.

To call the increments stationary means that the probability
distribution of any increment Xt − Xs depends only on the
length t − s of the time interval.

Note that in a Poisson process, the distribution of the number
of arrivals in any interval depends only on the length of the
interval, and not on the exact location of the interval on the
real line. Therefore the Poisson process has stationary
increments.
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Nonhomogeneous Poisson Process

A non-homogeneous Poisson process is obtained by allowing
the arrival rate at time t to be a function of t.

The counting process {N(t) : t ≥ 0} is said to be a
nonhomogeneous Poisson process with intensity function
λ(t), t > 0 if

1. N(0) = 0,
2. The process has independent increments,
3.

P[N(t + h) − N(t) = k] =


λ(t)h + o(h), k=1
o(h), k ≥ 2
1 − λ(t)h + o(h), k = 0
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Theorem

Let {N(t) : t > 0} be a nonhomogeneous Poisson process with
intensity function λ(t). Then,

P[N(t + s) − N(t) = n] = e−[m(t+s)−m(t)][m(t + s) − m(t)]n
n!

where

m(t) =
∫ t

0
λ(u)du.
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Proof - Inclass
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Proof
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Note
In homogeneous Poisson process

Pn(t) = P[N(t) = n]

In Non-homogeneous Poisson process

Pn,t(s) = P[N(t + s) − N(t) = n]

n - number of events

t - starting time

s - length of the interval.
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Example

A group of entrepreneurs runs a clothing store which opens at
8 A.M. From 8 until 11 A.M. customers arrive, on the average,
at a steady increase rate that starts with an initial rate of 5
customers per hour at 8 A.M. and reaches a maximum of 20
customers per hour at 11 A.M. From 11 A.M. until 1 P.M. the
average rate seems to remain constant at 20 customers per
hour. However, the average arrival rate then drops steadily
from 1 P.M. until closing time at 5 P.M. at which time it has
the value of 12 customers per hour. If we assume that the
number of customers arriving at the clothing store during
disjoint time periods is independent, then what is the
probability that no customers arrive between 8:30 A.M. and
9:30 A.M. on Monday morning? What is the expected number
of arrivals in this period? 30



Solution
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Solution
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