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Birth and Death Processes

• The birth-and-death process is a subclass of
continuous-time Markov chains.

• The birth-and-death processes are characterized by the
property that whenever a transition occurs from one state
to another, then this transition can be to a neighbouring
state only.
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Transition types

• a transition occurs from one state to another and this
transition can be to a neighbouring state only.

• Eg: State space S = {0, 1, 2, ..., i, ...}
• transition that occurs from state i, can be only to a

neighboring state (i − 1) or (i + 1).
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Birth rate and Death rate

Birth rate
λi - birth rate from state i, i ≥ 0

Death rate
µi - death rate from state i, i ≥ 0
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Queueing systems

1. Birth - equivalent to the arrival of a customer.
2. Death - equivalent to the departure of a served customer.
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Notations

A continuous-time Markov chain [X(t), t ∈ T] with state space
S = {0, 1, 2, ...} with rates

qi,i+1 = λi, i = 0, 1, ...,

qi,i−1 = µi, i = 1, 2, ...,

qi,j = 0, j ̸= i ± 1, j ̸= i, i = 0, 1, ..., and

qi = (λi + µi), i = 0, 1, ..., and µ0 = 0.
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Pure birth process, pure death process, birth-and-
death process

i) a pure birth process if µi = 0 for i = 1, 2, ...
• No decrements, only increments.

ii) a pure death process if λi = 0 for i = 1, 2, ...
• No increments, only decrements.

iii) a birth-and-death process if some of the λi’s and some of
the µi’s are positive.
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Examples of random phenomena modelled through
birth and death processes

• Spread of epidemic disease
• Mutant gene dynamics
• Cell kinetics (proliferation of cancer cells)
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Special cases

1. Linear birth process: Yule-Furry process
2. Linear death process
3. Linear birth and death process
4. M/M/I queue
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Pure Birth Process

• Special case of a continuous-time Markov process and
a generalisation of a Poisson process.

• Consider a population of individuals where only the
appearances of new individuals, which are called “birth”
occur.
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General birth processes

Let us consider a birth process whose total number of
individuals at time t is denoted by a discrete random variable
N(t). As parameter t varies {N(t) : t ≥ 0} represents a
stochastic process with a continuous parameter (time) space
and a discrete state space.

Let us assume that the birth rate depends on the present size
of the population. Further we assume that the births occur
according to the following postulates:

P[N(t + h) = n + k|N(t) = n] =
{

λnh + o(h), k=1
o(h), k ≥ 2
1 − λnh + o(h), k = 0
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General birth processes (cont)

Condition 1

P[N(t + h) = n + k|N(t) = n] =
{

λnh + o(h), k=1
o(h), k ≥ 2
1 − λnh + o(h), k = 0

where λn is the rate at which the births occur at time t and n
being the size of the population at time t.

Condition 2

N(0) > 0
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Your turn

Compare the differences in conditions between Poisson process,
Non-homogeneous Poisson Process and Birth Process
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Goal: Probability Mass Function of N(t)

What is the probability that the population size at a given
time, t, equals N(t) = n?

Pn(t) = P[N(t) = n] =?
For example,

P0(t) = P[N(t) = 0] =?

P1(t) = P[N(t) = 1] =?

P2(t) = P[N(t) = 2] =?

.

.

and so on..
In general

Pn(t) = P[N(t) = n] =?
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Linear Birth Process (Yule-Furry Process)

When, λn = nλ, i.e. when the birth rate is linear in the present
size of the population.
Then the pure birth process is said to a Linear Birth Process
or Yule-Furry Process.
Let is assume that there is only one individual in the
population initially, N(0) = 1. It can be shown that for any
t > 0.

P(N(t) = 0) = 0

P(N(t) = n) = e−λt(1 − e−λt)n−1 , n ≥ 1.
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Proof (general situation):

For n = 0
P0(t + h) = P(N(t) = 0)P(N(t + h) = 0|N(t) = 0)

P0(t + h) = P0(t)(1 − λ0h + o(h))

i.e.
P0(t + h) = P0(t) − λ0hP0(t) + o(h)P0(t)
limh→0

P0(t+h)−P0(t)
h = −limh→0λ0P0(t) + limh→0

o(h)
h P0(t)

i.e.
P′

0(t) = −λ0P0(t).
We assume that there is only one individual in the
population initially, N(0) = 1. Hence, P[N(t) = 0] = 0.
That is P0(t) = 0. 16



Proof: (cont)

For n ≥ 1

Pn(t + h) = P(N(t) = n)P(N(t + h) = n|N(t) = n)+
P(N(t) = n − 1)P(N(t + h) = n|N(t) = n − 1)+
n−1∑
r=2

P(N(t) = n − r)P(N(t + h) = n|N(t) = n − r)

i.e

Pn(t + h) = Pn(t)(1 − λnh + o(h))+
Pn−1(t)(λn−1h + o(h))+
o(h) 17



Proof: (cont)

Pn(t + h) = Pn(t) − λnhPn(t) + λn−1hPn−1(t) + o(h) for n ≥ 1

limh→0
Pn(t+h)−Pn(t)

h = −λnPn(t) + λn−1Pn−1(t) + limh→0
o(h)

h

i.e.

P′
n(t) = −λnPn(t) + λn−1Pn−1(t) for n ≥ 1.

Therefore the partial differential-difference equations is

For n ≥ 1, P′
n(t) = −λnPn(t) + λn−1Pn−1(t).
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When n = 1

P′
1(t) = −λ1P1(t),∫ P′
1(t)

P1(t)
dt = −λ1

∫
dt,

lnP1(t) = −λ1t + c

P1(t) = c1e−λ1t

When t = 0, c1 = 1

P1(t) = e−λ1t
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When n = 2

P′
2(t) = −λ2P2(t) + λ1P1(t),

P′
2(t) + λ2P2(t) = λ1e−λ1t,

Multiply by eλ2t

P′
2(t)eλ2t + λ2P2(t)eλ2t = λ1e−λ1teλ2t,

∫ d
dt [eλ2tP2(t)]dt =

∫
λ1e(λ2−λ1)tdt,

eλ2tP2(t) = λ1e(λ2−λ1)t

λ2 − λ1
+ c
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When t = 0,

We know that P2(0) = 0. hence,

c = − λ1
λ2−λ1

.

Hence,

P2(t) = λ1
λ2 − λ1

e−λ2t[e(λ2−λ1)t − 1]
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Linear birth process (Yule-Furry Process)

When,

λn = nλ.

That is the birth rate is linear in the present size of the
population.
Let us assume that there is only one individual in the
population initially. That is N(0) = 1.
Then the difference-differential equations of the linear birth
process takes the form
P′

n(t) = −nλPn(t) + (n − 1)λPn−1(t) for n ≥ 1 with the initial
conditions P1(0) = 1 and Pn(0) = 0 for n ≥ 2.
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Linear birth process (Yule-Furry Process) (cont)

P′
n(t) = −nλPn(t) + (n − 1)λPn−1(t) for n ≥ 1 with the initial

conditions P1(0) = 1 and Pn(0) = 0 for n ≥ 2.
Multiplying the equation for n by zn and summing over all n
we obtain

∂

∂t
∞∑

n=1
Pn(t)zn = −λz ∂

∂z
∞∑

n=1
Pn(t)zn + λz2 ∂

∂z
∞∑

n=1
Pn−1(t)zn−1

Let ∏(z, t) = ∑∞
n=1 Pn(t)zn. Then the above equations

becomes

∂
∏(z, t)
∂t = −λz∂

∏(z, t)
∂z + λz2∂

∏(z, t)
∂z

23



Linear birth process (Yule-Furry Process) (cont)

i.e. ∂
∏

(z,t)
∂t = λz(z − 1)∂

∏
(z,t)

∂z
∂
∏

(z,t)
∂t − λz(z − 1)∂

∏
(z,t)

∂z = 0

Subsidiary equations take the form

dt
1 = dz

−λz(z − 1) = d∏
0

Two independent solutions can be obtained one from d∏ = 0
and the other from −λdt = dz

z(z−1) .

d∏ = 0 ⇒ ∏(z, t) = constant.

−λdt = dz
z(z−1) ⇒ z

z−1e−λt = constant.

24



Linear birth process (Yule-Furry Process) (cont)

The general solution can be written as∏(z, t) = f
(

z
z−1e−λt

)
where f is an arbitrary function.

The initial conditions P1(0) = 1 and Pn(0) = 0 for n ≥ 2
imply that ∏(z, 0) = z.

∴
∏

(z, 0) = f
( z

z − 1

)
= z.

Let ω = z
z−1 ⇒ z = ω

ω−1 and hence we obtain f(ω) = ω
ω−1 .
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Linear birth process (Yule-Furry Process) (cont)

∴
∏

(z, t) =
z

z−1e−λt

z
z−1e−λt − 1 = ze−λt

ze−λt − (z − 1) =
(

1 − z − 1
z e−λt

)−1

Considering coefficients of zn we have

Pn(t) = e−λt(1 − e−λt)n−1 for n ≥ 1.

In proving the above results we assume that initially there is
only one individual in the population. That is N(0)=1.

Now let’s prove for the case N(0) = a, a ≥ 1. For that we use
moment generating functions.
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Moment generating function of N(t)

Let

MN(t)(θ, t) = E[eN(t)θ],

be the moment generating function of N(t). Then, for t > 0,

MN(t)(θ, t) =
∞∑

n=0
enθP(N(t) = n)

=
∞∑

n=0
enθPn(t).

(1)

27



Moment generating function of N(t) (cont.)

We assume that N(0) = a > 0. Hence, Pn(t) = 0 for all n < a.
Hence,

MN(t)(θ, t) =
∞∑

n=a
enθPn(t). (2)
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Moment generating function of N(t) (cont.)

Now we take derivative w.r.t θ. Then we get,

∂

∂θ
MN(t)(θ, t) =

∞∑
n=a

nenθPn(t).

The derivative w.r.t t is

∂

∂tMN(t)(θ, t) =
∞∑

n=a
enθP′

n(t)

=
∞∑

n=a
enθ[−nλPn(t) + (n − 1)λPn−1(t)]

= −
∞∑

n=a
nenθλPn(t) +

∞∑
n=a

(n − 1)enθλPn−1(t)

(3) 29



Moment generating function of N(t) (cont.)

Since Pa−1(t) = 0, the second summation starts at a + 1.
Hence,

∂

∂tMN(t)(θ, t) = −
∞∑

n=a
nenθλPn(t) +

∞∑
n=a+1

(n − 1)enθλPn−1(t)

= −
∞∑

n=a
nenθλPn(t) +

∞∑
m=a

me(m+1)θλPm(t)

= −λ
∞∑

n=a
nenθPn(t) + λeθ

∞∑
m=a

memθPm(t)

= −λ ∂
∂θ

MN(t)(θ, t) + λeθ ∂

∂θ
MN(t)(θ, t)

= λ(eθ − 1) ∂
∂θ

MN(t)(θ, t)
(4) 30



Moment generating function of N(t) (cont.)

∂

∂tMN(t)(θ, t) − λ(eθ − 1) ∂
∂θ

MN(t)(θ, t) = 0. (5)

Note:
A partial differential equation (PDE) for a function z(x, y) is
Lagrange type if it takes the form (General form of first-order
quasilinear PDE)

P(x, y, z)∂z
∂x + Q(x, y, z)∂z

∂y = R(x, y, z). (6)

The associated characteristic system of ordinary differential
equations. 31



Note (cont)
dx

P(x, y, z) = dy
Q(x, y, z) = dz

R(x, y, z) . (7)

is known as the characteristic (auxiliary) system of equation
(5). Suppose that two independent particular solutions of this
system have been found in the form

u(x, y, z) = C1 and v(x, y, z) = C2, where where C1 and C2 are
arbitrary constants.

Then the general solution to equation (5) can be written as

ϕ(u, v) = 0 (8)

where ϕ is an arbitrary function of two variables.
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Note (cont.)
With equation (6) solved for v, one often specifies the general
solution in the form v = ψ(u), where ψ(u) is an arbitrary
function of one variable. The ψ can be determined using the
boundary conditions.
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Moment generating function of N(t) (cont.)

Revisit equation 4,

∂

∂θ
MN(t)(θ, t) − λ(eθ − 1) ∂

∂θ
MN(t)(θ, t) = 0. (9)

According to the auxiliary system of equation in (6),

dt
1 = dθ

−λ(eθ − 1) = MN(t)
0

dt
1 = dMN(t)

0
dMN(t)

dt = 0 ⇒ MN(t)(θ, t) = constant.
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Moment generating function of N(t) (cont.)

Furthermore consider,

dt
1 = dθ

−λ(eθ − 1)

λdt = − 1
(eθ − 1)dθ

= −e−θ

1 − e−θ
dθ

(10)

From equation (9) we can write

λt = −ln(1 − e−θ) + c
, 35



Moment generating function of N(t) (cont.)

Furthermore

ln(eλt) + ln(1 − e−θ) = c.

Hence,

eλt(1 − e−θ) = constant.

Hence, the general solution for eq(8) is

MN(t)(θ, t) = Ψ[eλt(1 − e−θ)].
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Moment generating function of N(t) (cont.)

The boundary conditions Pa(0) = 1, and Pn(0) for n ̸= a,
imply that MN(t)(θ, 0) = ∑∞

n=a enθPn(0) = eaθ,

MN(t)(θ, 0) = eaθ = Ψ(1 − e−θ).

Let α = 1 − e−θ. Then, eθ = (1 − α)−1. Hence,

eaθ = Ψ(α) = (1 − α)−a.
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Moment generating function of N(t) (cont.)

Therefore,

MN(t)(θ, t) = Ψ[eλt(1 − e−θ)] = [1 − eλt(1 − e−θ)]−a.

Let p = e−λt and p + q = 1. Then,

MN(t)(θ, t) = [1−p−1(1−e−θ)]−a =
[

p − 1 + e−θ

p

]−a

=
(

p
e−θ − q

)a

.

Now from this MGF, we can derive the moments of N(t).
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Moment generating function of N(t) (cont.)

It can be shown that
E(N(t)) = a/p = aeλt and
V[N(t)] = a(1 − p)/p2 = a(1 − e−λt)e2λt.

Furthermore, we recognize the above MGF is in the form of
the MGF of a negative binomial random variable Y, with
probability mass function
P(Y = y) =y−1 Ca−1pa−1qy−1−(a−1)p =y−1 Ca−1paqy−a, for
y = a, a + 1, ...

Hence,
P(N(t) = n) =n−1 Ca−1paqn−a =n−1 Ca−1e−λta(1 − e−λt)n−a for
n = a, a + 1, ...
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Linear birth process (Yule-Furry Process)

Summary:

When, N(0) = 1

P(N(t) = 0) = 0

P(N(t) = n) = e−λt(1 − e−λt)n−1 , n ≥ 1.

When, N(0) = a

P(N(t) = n) =n−1 Ca−1paqn−a =n−1 Ca−1e−λta(1 − e−λt)n−a for
n = a, a + 1, ...
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Exercise

Consider a pure birth process on the states {0, 1, ...,N} for
which λk = (N − k)λ for k = 0, 1, ...,N. Suppose N(0) = 0.
Find Pn(t) = P(X(t) = n) for n = 0, 1 and 2.
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