STA 331 2.0 Stochastic Processes®

Birth-and-Death Processes

Prerequisite: Partial Differential Equations
A partial differential equation for a function z(x,y) is Lagrange type if it takes the form
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This equation contains i) partial differential coefficients, ii) independent variables and iii) dependent variables.
The auxiliary equations are
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Let u(z,y,2) = C7 and v(x,y, z) = Cs are two independent solutions of auxiliary equations. Here, C; and
C5 are constants.

Then the general solution to equation (1) can be written as f(u,v) =0 or u = ¢(v).

Example 1

Solve the following partial differential equation,

y*p — zyq = z(z — 2y),

where p = g—; and ¢ = g—z.

The auxiliary equations are

dx dy dz
2wy w(z-2y)
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rdr = —ydy.
Integrating equation (5) we get
22 o
2 2 2
Hence, we have
22 +y? =C).

Consider the last two terms in the equation (3)

—dy dz

vy w(z—2y)

2ydy = ydz + zdy.

Integrating equation (7) we get

y? —yz = Cs.

From equations (6) and (9)

2 +y? = f(y* —yz).

Answer: 2% +y? = f(y? — yz2).

Example 2 (This is related to the proof of birth process).

Solve the following partial differential equation.
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where
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We can simplify the equation (10) and obtain

OTI(1) _ OT1(2.1)
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Auxiliary /Subsidiary equations take the form

d_ i _dl]
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From the first two parts of the equation (12)

From the last two parts of the equation (12)
d[] =0
Integrating equations (13) and (14)

Xt _
e = constant
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1_[(27 t) = constant

The general solution can be written as,

[IGz0=r (Zf 1eM)

where f is an arbitrary function.
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