class: center, middle, inverse, title-slide # STA 517 3.0 Programming and Statistical Computing with R ## Functionals - part 1: Overview ### Dr Thiyanga Talagala ### 8 November 2020 --- # Functionals > A functional is a function that takes a function as an input and returns a vector as output. > Hadley Wickham, Advanced R ```r statistic <- function(f){ data <- c(10, 20, 30, 40, 62, 63) f(data) } ``` ```r statistic(mean) ``` ``` [1] 37.5 ``` ```r statistic(sum) ``` ``` [1] 225 ``` --- # Use of functionals: lapply lapply: loop over a list and evaluate a function on each element. ```r x <- list( a = 1:8, b = c(2.1, 3.2, 4.2, 5, 6)) x ``` ``` $a [1] 1 2 3 4 5 6 7 8 $b [1] 2.1 3.2 4.2 5.0 6.0 ``` ```r #We are passing `mean` is an argument to lapply lapply(x, mean) ``` ``` $a [1] 4.5 $b [1] 4.1 ``` ```r lapply(x, sum) ``` ``` $a [1] 36 $b [1] 20.5 ``` --- # Use of functionals: lapply (cont.) ```r cv <- function(data){sd(data)/mean(data)} lapply(x, cv) ``` ``` $a [1] 0.5443311 $b [1] 0.3706996 ``` --- # lapply is a for-loop replacement ```r x <- list( a = 1:8, b = c(2.1, 3.2, 4.2, 5, 6)) x ``` ``` $a [1] 1 2 3 4 5 6 7 8 $b [1] 2.1 3.2 4.2 5.0 6.0 ``` ```r result_x <- list() result_x ``` ``` list() ``` ```r for (i in 1:2){ result_x[[i]] <- mean(x[[i]]) } result_x ``` ``` [[1]] [1] 4.5 [[2]] [1] 4.1 ``` --- # Use of functionals: sapply lapply: loop over a list and evaluate a function on each element. ```r x <- list( a = 1:8, b = c(2.1, 3.2, 4.2, 5, 6)) x ``` ``` $a [1] 1 2 3 4 5 6 7 8 $b [1] 2.1 3.2 4.2 5.0 6.0 ``` ```r #We are passing `mean` is an argument to lapply sapply(x, mean) ``` ``` a b 4.5 4.1 ``` ```r sapply(x, sum) ``` ``` a b 36.0 20.5 ``` Same as `lapply` but the output is a vector. --- # `map()` function in purrr ```r library(purrr) ``` ```r x <- list( a = 1:8, b = c(2.1, 3.2, 4.2, 5, 6)) x ``` ``` $a [1] 1 2 3 4 5 6 7 8 $b [1] 2.1 3.2 4.2 5.0 6.0 ``` ```r map(x, mean) ``` ``` $a [1] 4.5 $b [1] 4.1 ``` - The base equivalent to `map()` is `lapply()`. --- # `map` syntax > map(YOUR_LIST, YOUR_FUNCTION) ```r map(c(4, 9, 16), sqrt) ``` ``` [[1]] [1] 2 [[2]] [1] 3 [[3]] [1] 4 ``` --- # `map()` <!--Before we go on to explore more map variants, let’s take a quick look at how you tend to use multiple purrr functions to solve a moderately realistic problem: fitting a model to each subgroup and extracting a coefficient of the model. For this toy example, I’m going to break the mtcars data set down into groups defined by the number of cylinders, using the base split function. --> ```r iris_species <- split(iris, iris$Species) str(iris_species) ``` ``` List of 3 $ setosa :'data.frame': 50 obs. of 5 variables: ..$ Sepal.Length: num [1:50] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... ..$ Sepal.Width : num [1:50] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... ..$ Petal.Length: num [1:50] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... ..$ Petal.Width : num [1:50] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... $ versicolor:'data.frame': 50 obs. of 5 variables: ..$ Sepal.Length: num [1:50] 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ... ..$ Sepal.Width : num [1:50] 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ... ..$ Petal.Length: num [1:50] 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ... ..$ Petal.Width : num [1:50] 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ... $ virginica :'data.frame': 50 obs. of 5 variables: ..$ Sepal.Length: num [1:50] 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 ... ..$ Sepal.Width : num [1:50] 3.3 2.7 3 2.9 3 3 2.5 2.9 2.5 3.6 ... ..$ Petal.Length: num [1:50] 6 5.1 5.9 5.6 5.8 6.6 4.5 6.3 5.8 6.1 ... ..$ Petal.Width : num [1:50] 2.5 1.9 2.1 1.8 2.2 2.1 1.7 1.8 1.8 2.5 ... ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 3 3 3 3 3 3 3 3 3 3 ... ``` This creates a list of three data frames. <!--I think this code is easy to read because each line encapsulates a single step, you can easily distinguish the functional from what it does, and the purrr helpers allow us to very concisely describe what to do in each step.--> --- # `map()` (cont.) ```r head(iris_species) ``` ``` $setosa Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa 7 4.6 3.4 1.4 0.3 setosa 8 5.0 3.4 1.5 0.2 setosa 9 4.4 2.9 1.4 0.2 setosa 10 4.9 3.1 1.5 0.1 setosa 11 5.4 3.7 1.5 0.2 setosa 12 4.8 3.4 1.6 0.2 setosa 13 4.8 3.0 1.4 0.1 setosa 14 4.3 3.0 1.1 0.1 setosa 15 5.8 4.0 1.2 0.2 setosa 16 5.7 4.4 1.5 0.4 setosa 17 5.4 3.9 1.3 0.4 setosa 18 5.1 3.5 1.4 0.3 setosa 19 5.7 3.8 1.7 0.3 setosa 20 5.1 3.8 1.5 0.3 setosa 21 5.4 3.4 1.7 0.2 setosa 22 5.1 3.7 1.5 0.4 setosa 23 4.6 3.6 1.0 0.2 setosa 24 5.1 3.3 1.7 0.5 setosa 25 4.8 3.4 1.9 0.2 setosa 26 5.0 3.0 1.6 0.2 setosa 27 5.0 3.4 1.6 0.4 setosa 28 5.2 3.5 1.5 0.2 setosa 29 5.2 3.4 1.4 0.2 setosa 30 4.7 3.2 1.6 0.2 setosa 31 4.8 3.1 1.6 0.2 setosa 32 5.4 3.4 1.5 0.4 setosa 33 5.2 4.1 1.5 0.1 setosa 34 5.5 4.2 1.4 0.2 setosa 35 4.9 3.1 1.5 0.2 setosa 36 5.0 3.2 1.2 0.2 setosa 37 5.5 3.5 1.3 0.2 setosa 38 4.9 3.6 1.4 0.1 setosa 39 4.4 3.0 1.3 0.2 setosa 40 5.1 3.4 1.5 0.2 setosa 41 5.0 3.5 1.3 0.3 setosa 42 4.5 2.3 1.3 0.3 setosa 43 4.4 3.2 1.3 0.2 setosa 44 5.0 3.5 1.6 0.6 setosa 45 5.1 3.8 1.9 0.4 setosa 46 4.8 3.0 1.4 0.3 setosa 47 5.1 3.8 1.6 0.2 setosa 48 4.6 3.2 1.4 0.2 setosa 49 5.3 3.7 1.5 0.2 setosa 50 5.0 3.3 1.4 0.2 setosa $versicolor Sepal.Length Sepal.Width Petal.Length Petal.Width Species 51 7.0 3.2 4.7 1.4 versicolor 52 6.4 3.2 4.5 1.5 versicolor 53 6.9 3.1 4.9 1.5 versicolor 54 5.5 2.3 4.0 1.3 versicolor 55 6.5 2.8 4.6 1.5 versicolor 56 5.7 2.8 4.5 1.3 versicolor 57 6.3 3.3 4.7 1.6 versicolor 58 4.9 2.4 3.3 1.0 versicolor 59 6.6 2.9 4.6 1.3 versicolor 60 5.2 2.7 3.9 1.4 versicolor 61 5.0 2.0 3.5 1.0 versicolor 62 5.9 3.0 4.2 1.5 versicolor 63 6.0 2.2 4.0 1.0 versicolor 64 6.1 2.9 4.7 1.4 versicolor 65 5.6 2.9 3.6 1.3 versicolor 66 6.7 3.1 4.4 1.4 versicolor 67 5.6 3.0 4.5 1.5 versicolor 68 5.8 2.7 4.1 1.0 versicolor 69 6.2 2.2 4.5 1.5 versicolor 70 5.6 2.5 3.9 1.1 versicolor 71 5.9 3.2 4.8 1.8 versicolor 72 6.1 2.8 4.0 1.3 versicolor 73 6.3 2.5 4.9 1.5 versicolor 74 6.1 2.8 4.7 1.2 versicolor 75 6.4 2.9 4.3 1.3 versicolor 76 6.6 3.0 4.4 1.4 versicolor 77 6.8 2.8 4.8 1.4 versicolor 78 6.7 3.0 5.0 1.7 versicolor 79 6.0 2.9 4.5 1.5 versicolor 80 5.7 2.6 3.5 1.0 versicolor 81 5.5 2.4 3.8 1.1 versicolor 82 5.5 2.4 3.7 1.0 versicolor 83 5.8 2.7 3.9 1.2 versicolor 84 6.0 2.7 5.1 1.6 versicolor 85 5.4 3.0 4.5 1.5 versicolor 86 6.0 3.4 4.5 1.6 versicolor 87 6.7 3.1 4.7 1.5 versicolor 88 6.3 2.3 4.4 1.3 versicolor 89 5.6 3.0 4.1 1.3 versicolor 90 5.5 2.5 4.0 1.3 versicolor 91 5.5 2.6 4.4 1.2 versicolor 92 6.1 3.0 4.6 1.4 versicolor 93 5.8 2.6 4.0 1.2 versicolor 94 5.0 2.3 3.3 1.0 versicolor 95 5.6 2.7 4.2 1.3 versicolor 96 5.7 3.0 4.2 1.2 versicolor 97 5.7 2.9 4.2 1.3 versicolor 98 6.2 2.9 4.3 1.3 versicolor 99 5.1 2.5 3.0 1.1 versicolor 100 5.7 2.8 4.1 1.3 versicolor $virginica Sepal.Length Sepal.Width Petal.Length Petal.Width Species 101 6.3 3.3 6.0 2.5 virginica 102 5.8 2.7 5.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 104 6.3 2.9 5.6 1.8 virginica 105 6.5 3.0 5.8 2.2 virginica 106 7.6 3.0 6.6 2.1 virginica 107 4.9 2.5 4.5 1.7 virginica 108 7.3 2.9 6.3 1.8 virginica 109 6.7 2.5 5.8 1.8 virginica 110 7.2 3.6 6.1 2.5 virginica 111 6.5 3.2 5.1 2.0 virginica 112 6.4 2.7 5.3 1.9 virginica 113 6.8 3.0 5.5 2.1 virginica 114 5.7 2.5 5.0 2.0 virginica 115 5.8 2.8 5.1 2.4 virginica 116 6.4 3.2 5.3 2.3 virginica 117 6.5 3.0 5.5 1.8 virginica 118 7.7 3.8 6.7 2.2 virginica 119 7.7 2.6 6.9 2.3 virginica 120 6.0 2.2 5.0 1.5 virginica 121 6.9 3.2 5.7 2.3 virginica 122 5.6 2.8 4.9 2.0 virginica 123 7.7 2.8 6.7 2.0 virginica 124 6.3 2.7 4.9 1.8 virginica 125 6.7 3.3 5.7 2.1 virginica 126 7.2 3.2 6.0 1.8 virginica 127 6.2 2.8 4.8 1.8 virginica 128 6.1 3.0 4.9 1.8 virginica 129 6.4 2.8 5.6 2.1 virginica 130 7.2 3.0 5.8 1.6 virginica 131 7.4 2.8 6.1 1.9 virginica 132 7.9 3.8 6.4 2.0 virginica 133 6.4 2.8 5.6 2.2 virginica 134 6.3 2.8 5.1 1.5 virginica 135 6.1 2.6 5.6 1.4 virginica 136 7.7 3.0 6.1 2.3 virginica 137 6.3 3.4 5.6 2.4 virginica 138 6.4 3.1 5.5 1.8 virginica 139 6.0 3.0 4.8 1.8 virginica 140 6.9 3.1 5.4 2.1 virginica 141 6.7 3.1 5.6 2.4 virginica 142 6.9 3.1 5.1 2.3 virginica 143 5.8 2.7 5.1 1.9 virginica 144 6.8 3.2 5.9 2.3 virginica 145 6.7 3.3 5.7 2.5 virginica 146 6.7 3.0 5.2 2.3 virginica 147 6.3 2.5 5.0 1.9 virginica 148 6.5 3.0 5.2 2.0 virginica 149 6.2 3.4 5.4 2.3 virginica 150 5.9 3.0 5.1 1.8 virginica ``` --- # `map()` (cont.) Fit a linear model between `Petal.Width ~ Petal.Length` and extract the second coefficient. ```r library(magrittr) iris_species %>% map(~lm(Petal.Width ~ Petal.Length, data = .x)) %>% map(coef) %>% map_dbl(2) ``` ``` setosa versicolor virginica 0.2012451 0.3310536 0.1602970 ``` --- # With the tidyverse ```r iris_species %>% map(~lm(Petal.Width ~ Petal.Length, data = .x)) %>% map(coef) %>% map_dbl(2) ``` ``` setosa versicolor virginica 0.2012451 0.3310536 0.1602970 ``` # With base R ```r models <- lapply(iris_species, function(data) lm(Petal.Width ~ Petal.Length, data = data)) vapply(models, function(x) coef(x)[[2]], double(1)) ``` ``` setosa versicolor virginica 0.2012451 0.3310536 0.1602970 ``` Or use for loop --- # With the tidyverse ```r iris_species %>% map(~lm(Petal.Width ~ Petal.Length, data = .x)) %>% map(coef) %>% map_dbl(2) ``` ``` setosa versicolor virginica 0.2012451 0.3310536 0.1602970 ``` # For loop ```r intercepts <- double(length(iris_species)) for (i in seq_along(iris_species)) { model <- lm(Petal.Width ~ Petal.Length, data = iris_species[[i]]) intercepts[[i]] <- coef(model)[[2]] } intercepts ``` ``` [1] 0.2012451 0.3310536 0.1602970 ``` --- # `map` variants: `modify` ```r df <- data.frame( x = 1:3, y = 6:4 ) map(df, ~ .x * 10) ``` ``` $x [1] 10 20 30 $y [1] 60 50 40 ``` ```r # If you want to keep the output as a data frame, you can use modify() modify(df, ~ .x * 10) ``` ``` x y 1 10 60 2 20 50 3 30 40 ``` `modify` returns the same type of output as the input. --- # `map_df` ```r map_output <- map(mtcars, function(x) length(unique(x))) head(map_output, 3) ``` ``` $mpg [1] 25 $cyl [1] 3 $disp [1] 27 ``` ```r map_df_output <- map_df(mtcars, function(x) length(unique(x))) head(map_df_output) ``` ``` # A tibble: 1 x 11 mpg cyl disp hp drat wt qsec vs am gear carb <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> 1 25 3 27 22 22 29 30 2 2 3 6 ``` --- # `map`/`map_df`/`modify` ```r set.seed(2020) x <- list(a=rnorm(5), b=rnorm(6)) map(x, mean) ``` ``` $a [1] -0.8692886 $b [1] 0.4089487 ``` ```r map_df(x, mean) ``` ``` # A tibble: 1 x 2 a b <dbl> <dbl> 1 -0.869 0.409 ``` ```r modify(x, mean) ``` ``` $a [1] -0.8692886 $b [1] 0.4089487 ``` --- class: center, middle Slides available at: https://thiyanga.netlify.app/courses/rmsc2020/contentr/ All rights reserved by [Thiyanga S. Talagala](https://thiyanga.netlify.com/) Reference: Advanced R, Hadley Wickham