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Large collections of time series

@ Forecasting demand for thousands of products across multiple
warehouses.
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Time series features

Objective

Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

o Basic idea:
Transform a given time series y = {y1,y2, -+, yn} to a feature

vector £ = (fi(y), 2(y), -+, fo(¥))"
@ Examples for time series features

strength of trend

strength of seasonality
e lag-1 autocorrelation

e spectral entropy



Feature-space of time series
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Feature-space of time series

STL-decomposition
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Time series features

®© 6 6 6 6 66 o o o

length

strength of seasonality
strength of trend
linearity

curvature

spikiness

stability

lumpiness

first ACF value of
remainder series

parameter estimates of
Holt's linear trend method
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spectral entropy
Hurst exponent
nonlinearity

parameter estimates of
Holt-Winters' additive
method

unit root test statistics

first ACF value of residual
series of linear trend model
ACF and PACF based
features - calculated on
both the raw and
differenced series



Methodology: FFORMS

FFORMS: Feature-based FORecast Model Selection
Offline

o A classification algorithm (the meta-learner) is trained.
Online

o Calculate the features of a time series and use the pre-trained
classifier to identify the best forecasting method.
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FFORMS: Random-forest classifier
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FFORMS: “online” part of the algorithm

. input -
features )
traina

classification
algorithm

reference set

. observed
population -»

simulated | g

time series
test identify i output-
2= R
random
new time forest
series classifier

training
period




FFORMS: “online” part of the algorithm

. input -
features )
traina

classification
algorithm

reference set

. observed
population -»

simulated | g

time series
test identify i output-
2= R
random
feature ) forest
calculation classifier

training
period

new time
series




FFORMS: “online” part of the algorithm

. input -
features )
traina

classification
algorithm

reference set

. observed
population -»

simulated | g

time series
test identify i output-
2= R
random
feature ) forest
calculation classifier

¥

training
period

new time
series

forecasting
method



Application to M competition data

@ Proposed algorithm is applied to yearly, quarterly and monthly
series separately.

@ We run two experiments for each case.

Experiment 1 Experiment 2
Source Y Q M Source Y Q M

Observed series M1 181 203 617 M3 645 756 1428
362000 406000 123400 1290000 1512000 285600

New series M3 645 756 1428 M1 181 203 617




Experiment 1: Distribution of time series in the PCA space
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Experiment 2: Distribution of time series in the PCA space
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Results: Yearly
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Results: Quarterly
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Discussion and Conclusions

e FFORMS: framework for forecast model selection using
meta-learning based on time series features.

e FFORMS algorithm uses the knowledge of the past
performance of candidate forecast models on a collection of
time series in order to identify the best forecasting method for
a new series.

@ For real-time forecasting, our framework involves only the
calculation of features, the selection of a forecast method
based on the FFORMS random forest classifier, and the
calculation of the forecasts from the chosen model.

@ We have also introduced a simple set of time series features
that are useful in identifying the "best" forecast method for a
given time series.



R package: seer

available at: https://github.com /thiyangt/seer

Installation

devtools: :install_github("thiyangt/seer")
library(seer)
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