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Big picture

What algorithm is likely to perform best?

Algorithm selection problem, John Rice (1976)
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FFORMS: Feature-based FORecast Model Selection
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Forecast-models included
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White noise process
ARMA/AR/MA
ARIMA
SARIMA
Random walk with drift
Random walk
Seasonal naive
TBATS
neural network forecasts
Theta method

STL-AR
ETS-without trend and seasonal
ETS-trend
ETS-damped trend
ETS-trend and seasonal
ETS-damped trend and seasonal
ETS-seasonal
MSTL-ETS
MSTL-ARIMA



Time series features
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length
strength of seasonality
strength of trend
linearity
curvature
spikiness
stability
lumpiness
spectral entropy
Hurst exponent
nonlinearity

unit root test statistics
parameter estimates of Holt’s
linear trend method
parameter estimates of
Holt-Winters’ additive
method
ACF and PACF based features -
calculated on raw,
differenced,
seasonally-differenced series
and remainder series.



Results: M4 Competition data

Yearly Quarterly Monthly Weekly Daily Hourly
FFORMS 3.17 1.20 0.98 2.31 3.57 0.84
auto.arima 3.40 1.17 0.93 2.55 - -
ets 3.44 1.16 0.95 - - -
theta 3.37 1.24 0.97 2.64 3.33 1.59
rwd 3.07 1.33 1.18 2.68 3.25 11.45
rw 3.97 1.48 1.21 2.78 3.27 11.60
nn 4.06 1.55 1.14 4.04 3.90 1.09
stlar - 2.02 1.33 3.15 4.49 1.49
snaive - 1.66 1.26 2.78 24.46 2.86
tbats - 1.19 1.05 2.49 3.27 1.30
wn 13.42 6.50 4.11 49.91 38.07 11.68
mstlarima - - - - 3.84 1.12
mstlets - - - - 3.73 1.23
combination (mean) 4.09 1.58 1.16 6.96 7.94 3.93
M4-1st 2.98 1.12 0.88 2.36 3.45 0.89
M4-2nd 3.06 1.11 0.89 2.11 3.34 0.81
M4-3rd 3.13 1.23 0.95 2.16 2.64 0.87

Can we trust ML-algorithms if we don’t know how it works?
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Peeking inside FFORMS!!!
Which features are the most important?

Where are they important?

How are they important?

When and how are features linked with the prediction
outcome?

When and how strongly do features interact with
other features?



Global explanation of feature contribution

Overall role of features in the choice of different forecast-model
selection.

Permutation-based variable importance

Mean decrease in Gini coefficient

Partial dependence plots (Jerome H. Friedman, 2001)

Individual Conditional Expectation (ICE) curves (Goldstein et
al., 2015; Zhao and Hastie, 2017)
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Partial dependence plots and ICE curves
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Partial dependence curve and ICE curves
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Feature importance
measures:

"flatness" of PD curve

"flatness" of ICE curves



Feature importance plots for yearly data

ARIMA ARMA wn theta nn
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Partial dependency plots for yearly data

ARIMA ETS−T ETS−NTNS ARMA wn
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Partial dependency plots for quarterly data

ETS−NTNS ETS−DT ETS−T ETS−DTS ETS−TS ETS−S
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Partial dependency plots for monthly data

linearity: estimated value of β1 based on Tt = β0 +β1φ1(t) +β2φ2(t) + εt
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Hourly series

multiple seasonality

Hourly data

I daily - 24

I weekly - 168
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Feature importance plots for hourly data
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Partial dependency plots for hourly data: Seasonality

tbats stlar theta nn wn
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Partial dependency plots for hourly data: entropy

forecastability of a time series
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Interaction effect

Friedman’s H-statistic

fraction of variance of two-variable partial dependency not captured by
sum of the respective individual partial dependencies.

Hourly: interaction between linearity and seasonal lag at
seasonally-differenced series
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Discussion

Global perspective of feature contribution: the overall role of
features in the choice of different forecast-models.

What next? Local perspective of feature contribution: zoom
into local regions of the data to identify which features
contribute most to classify a specific instance.
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R package

available at: https://github.com/thiyangt/seer

devtools::install_github("thiyangt/seer")
library(seer)

slides: https://thiyanga.netlify.com/talks/isf2019.pdf

email: thiyanga.talagala@monash.edu 21
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