A classification framework for forecast-model selection

Thiyanga S Talagala Rob J Hyndman George Athanasopoulos

 $\label{eq:monash_university} Monash \ University, \ Australia \\ Slides: \ http://thiyanga.netlify.com/talk/jsm18-talk/$

Joint Statistical Meetings, 2018

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

Basic idea:

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

Basic idea:

Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.

Examples for time series features

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

- Basic idea:
 - Transform a given time series $y = \{y_1, y_2, \dots, y_n\}$ to a feature vector $F = (f_1(y), f_2(y), \dots, f_p(y))'$.
- Examples for time series features
 - strength of trend

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

Basic idea:

- Examples for time series features
 - strength of trend
 - strength of seasonality

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

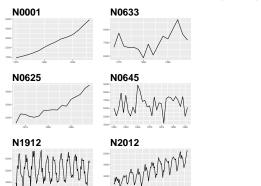
Basic idea:

- Examples for time series features
 - strength of trend
 - strength of seasonality
 - lag-1 autocorrelation

Objective

Develop a framework that automates the selection of the most appropriate forecasting method for a given time series by using an array of features computed from the time series.

• Basic idea:

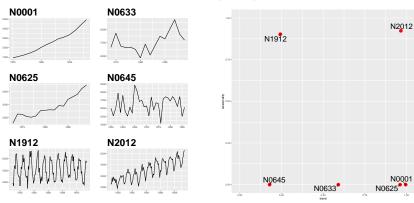

- Examples for time series features
 - strength of trend
 - strength of seasonality
 - lag-1 autocorrelation
 - spectral entropy

Feature-space of time series

STL-decomposition

$$Y_t = T_t + S_t + R_t$$

- strength of trend: $1 \frac{Var(R_t)}{Var(Y_t S_t)}$
- ullet strength of seasonality: $1-rac{ extstyle ex$



Feature-space of time series

STL-decomposition

$$Y_t = T_t + S_t + R_t$$

- strength of trend: $1 \frac{Var(R_t)}{Var(Y_t S_t)}$
- ullet strength of seasonality: $1-rac{ extstyle Var(R_t)}{ extstyle Va(Y_t-T_t)}$

- length
- strength of seasonality
- strength of trend
- linearity
- curvature
- spikiness
- stability
- lumpiness
- first ACF value of remainder series
- parameter estimates of Holt's linear trend method

- spectral entropy
- Hurst exponent
- nonlinearity
- parameter estimates of Holt-Winters' additive method
- unit root test statistics
- first ACF value of residual series of linear trend model
- ACF and PACF based features - calculated on both the raw and differenced series

Methodology: FFORMS

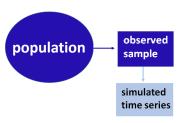
FFORMS: Feature-based FORecast Model Selection

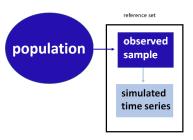
Offline

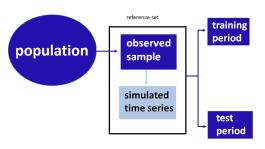
• A classification algorithm (the meta-learner) is trained.

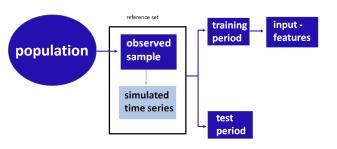
Online

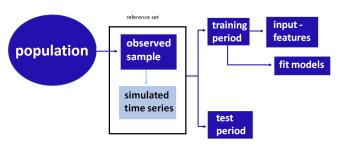
 Calculate the features of a time series and use the pre-trained classifier to identify the best forecasting method.

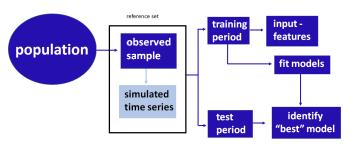

FFORMS: population

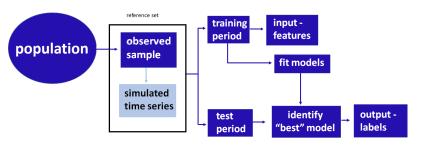

FFORMS: observed sample

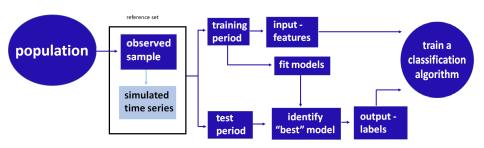


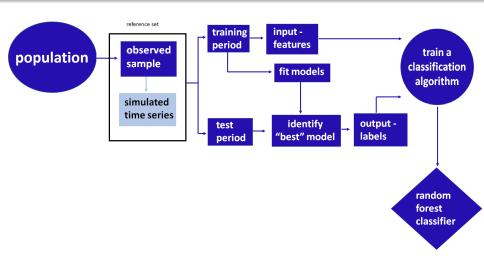

FFORMS: simulated time series

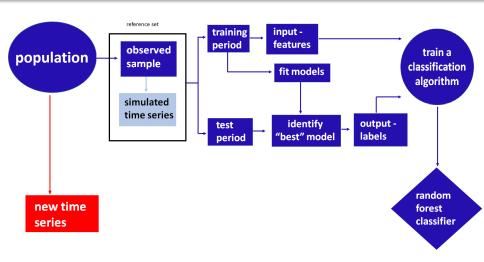


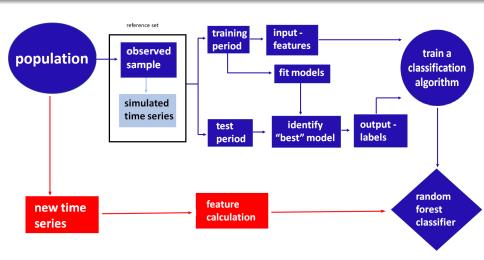

FFORMS: reference set

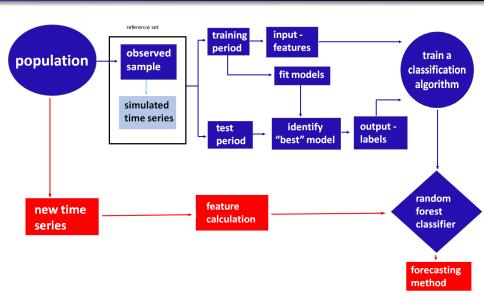






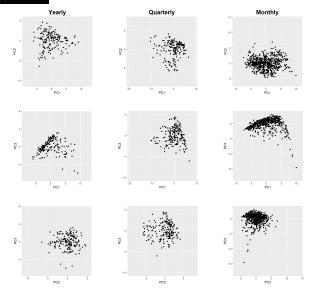



FFORMS: Random-forest classifier


FFORMS: "online" part of the algorithm

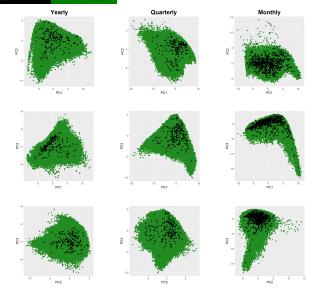
FFORMS: "online" part of the algorithm

FFORMS: "online" part of the algorithm

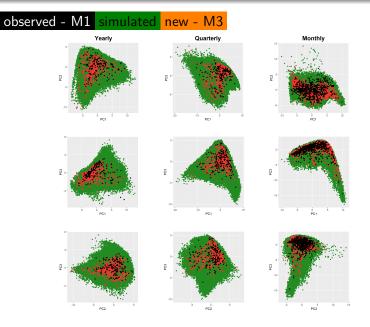

Application to M competition data

- Proposed algorithm is applied to yearly, quarterly and monthly series separately.
- We run two experiments for each case.

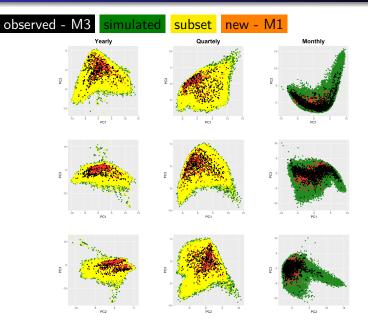
	Experiment 1				Experiment 2			
	Source	Y	Q	M	Source	Y	Q	М
Observed series	M1	181	203	617	М3	645	756	1428
Simulated series		362000	406000	123400		1290000	1512000	285600
New series	М3	645	756	1428	M1	181	203	617

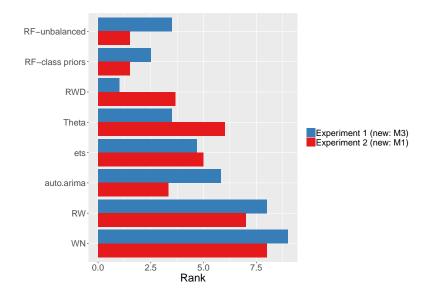

Experiment 1: Distribution of time series in the PCA space

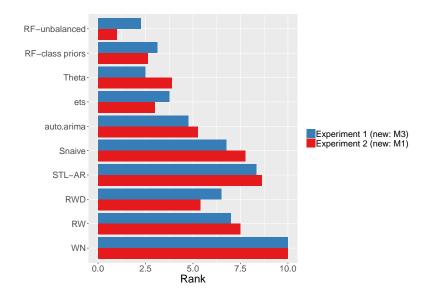
observed - M1

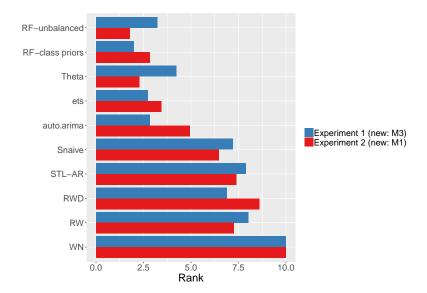


Experiment 1: Distribution of time series in the PCA space


observed - M1 simulated


Experiment 1: Distribution of time series in the PCA space


Experiment 2: Distribution of time series in the PCA space


Results: Yearly

Results: Quarterly

Results: Monthly

• FFORMS: framework for forecast model selection using meta-learning based on time series features.

- FFORMS: framework for forecast model selection using meta-learning based on time series features.
- FFORMS algorithm uses the knowledge of the past performance of candidate forecast models on a collection of time series in order to identify the best forecasting method for a new series.

- FFORMS: framework for forecast model selection using meta-learning based on time series features.
- FFORMS algorithm uses the knowledge of the past performance of candidate forecast models on a collection of time series in order to identify the best forecasting method for a new series.
- For real-time forecasting, our framework involves only the calculation of features, the selection of a forecast method based on the FFORMS random forest classifier, and the calculation of the forecasts from the chosen model.

- FFORMS: framework for forecast model selection using meta-learning based on time series features.
- FFORMS algorithm uses the knowledge of the past performance of candidate forecast models on a collection of time series in order to identify the best forecasting method for a new series.
- For real-time forecasting, our framework involves only the calculation of features, the selection of a forecast method based on the FFORMS random forest classifier, and the calculation of the forecasts from the chosen model.
- We have also introduced a simple set of time series features that are useful in identifying the "best" forecast method for a given time series.

R package: seer

available at: https://github.com/thiyangt/seer

Installation

```
devtools::install_github("thiyangt/seer")
library(seer)
```

R package: seer

available at: https://github.com/thiyangt/seer

```
Installation
```

```
devtools::install_github("thiyangt/seer")
library(seer)
```

paper: https://robjhyndman.com/publications/fforms/

email: thiyanga.talagala@monash.edu