
1/20

seer: R package for feature-based forecast model
selection

Thiyanga S Talagala
Rob J Hyndman

George Athanasopoulos

Monash University, Australia

UseR, 2018

1 / 20

2/20

Large collections of time series

Forecasting demand for thousands of products across multiple
warehouses. 2 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.

Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

3/20

Time series features

Objective
Develop a framework that automates the selection of the most
appropriate forecasting method for a given time series by using an
array of features computed from the time series.

Basic idea:
Transform a given time series y = {y1, y2, · · · , yn} to a feature
vector F = (f1(y), f2(y), · · · , fp(y))′.
Examples for time series features

strength of trend

strength of seasonality

lag-1 autocorrelation

spectral entropy

3 / 20

4/20

Time series features

length
strength of seasonality
strength of trend
linearity
curvature
spikiness
stability
lumpiness
first ACF value of
remainder series
parameter estimates of
Holt’s linear trend method

spectral entropy
Hurst exponent
nonlinearity
parameter estimates of
Holt-Winters’ additive
method
unit root test statistics
first ACF value of residual
series of linear trend model
ACF and PACF based
features - calculated on
both the raw and
differenced series

4 / 20

5/20

Methodology: FFORMS

FFORMS: Feature-based FORecast Model Selection

Offline

A classification algorithm (the meta-learner) is trained.

Online

Calculate the features of a time series and use the pre-trained
classifier to identify the best forecasting method.

5 / 20

6/20

FFORMS: “offline” part of the algorithm

6 / 20

7/20

FFORMS: “online” part of the algorithm

7 / 20

8/20

FFORMS: “online” part of the algorithm

8 / 20

9/20

FFORMS: “online” part of the algorithm

9 / 20

10/20

R package: seer
Installation

devtools::install_github("thiyangt/seer")
library(seer)

Example datasets

observed time series - M1 yearly series (181)

library(Mcomp)
yearlym1 <- subset(M1, "yearly")

new time series - M3 yearly series (645)

yearlym3 <- subset(M3, "yearly")

10 / 20

10/20

R package: seer
Installation

devtools::install_github("thiyangt/seer")
library(seer)

Example datasets

observed time series - M1 yearly series (181)

library(Mcomp)
yearlym1 <- subset(M1, "yearly")

new time series - M3 yearly series (645)

yearlym3 <- subset(M3, "yearly")

10 / 20

10/20

R package: seer
Installation

devtools::install_github("thiyangt/seer")
library(seer)

Example datasets

observed time series - M1 yearly series (181)

library(Mcomp)
yearlym1 <- subset(M1, "yearly")

new time series - M3 yearly series (645)

yearlym3 <- subset(M3, "yearly")

10 / 20

11/20

Input: features

cal_features(yearlym1[1:3], database="M3",
h=6, highfreq=FALSE)

A tibble: 3 x 25
entropy lumpiness stability hurst trend spikiness linearity curvature

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.683 0.0400 0.977 0.985 0.985 0.00000132 4.46 0.705
2 0.711 0.0790 0.894 0.988 0.989 0.00000154 4.47 0.613
3 0.716 0.0160 0.858 0.987 0.989 0.00000113 4.60 0.695
... with 17 more variables: e_acf1 <dbl>, y_acf1 <dbl>,
diff1y_acf1 <dbl>, diff2y_acf1 <dbl>, y_pacf5 <dbl>,
diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>

11 / 20

12/20

Output: labels

fcast_accuracy(yearlym1[1:3],
models=c("arima","ets","rw","rwd","theta","nn"),
database="M3", cal_MASE, h=6)

$accuracy
arima ets rw rwd theta nn

YAF2 10.527612 10.319029 13.52428 10.527612 12.088375 11.794209
YAF3 5.713867 7.704409 7.78949 5.225965 6.225463 6.700765
YAF4 8.633590 8.091416 11.55633 8.440105 9.952742 10.784679

$ARIMA
YAF2 YAF3

"ARIMA(0,1,0) with drift" "ARIMA(0,1,1) with drift"
YAF4

"ARIMA(0,1,2) with drift"

$ETS
YAF2 YAF3 YAF4

"ETS(A,A,N)" "ETS(M,A,N)" "ETS(M,A,N)"

12 / 20

13/20

Reference set

accuracy_m1 <- fcast_accuracy(tslist=yearlym1,
models= c("arima","ets","rw","rwd", "theta", "nn"),
database ="M1", cal_MASE)

features_m1 <- cal_features(yearlym1, database="M1", highfreq = FALSE)

reference_set <- prepare_trainingset(accuracy_set = accuracy_m1,
feature_set = features_m1)
head(reference_set$trainingset, 1)

A tibble: 1 x 26
entropy lumpiness stability hurst trend spikiness linearity curvature

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.683 0.0400 0.977 0.985 0.985 0.00000132 4.46 0.705
... with 18 more variables: e_acf1 <dbl>, y_acf1 <dbl>,
diff1y_acf1 <dbl>, diff2y_acf1 <dbl>, y_pacf5 <dbl>,
diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>,
classlabels <chr>

13 / 20

14/20

FFORMS classifier

ym3_features <- cal_features(yearlym3,
database="M3", highfreq = FALSE)

fforms <- build_rf(training_set = ref_set$trainingset,
testset=ym3_features, rf_type="rcp",

ntree=100, seed=7, import=FALSE)

fforms$predictions %>% head(10)

1 2 3 4 5 6 7
ETS-trend rwd rwd rwd rwd rwd rwd
8 9 10 11 12 13 14
rwd rwd rwd rwd ETS-trend rwd rwd
15 16 17 18 19 20
nn rwd rwd rwd rwd ARIMA
10 Levels: ARIMA ARMA/AR/MA ETS-dampedtrend ... wn

14 / 20

15/20

Generate point foecasts and 95% prediction intervals

rf_forecast(fforms$predictions[1:2],
tslist=yearlym3[1:2], database="M3",
function_name="cal_MASE", h=6, accuracy=TRUE)

$mean
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 5486.429 6035.865 6585.301 7134.737 7684.173 8233.609
[2,] 4402.227 4574.454 4746.681 4918.908 5091.135 5263.362
##
$lower
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 4984.162 4893.098 4629.135 4199.745 3606.858 2848.8735
[2,] 2890.401 2366.671 1959.916 1608.186 1288.666 990.2221
##
$upper
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 5988.696 7178.632 8541.467 10069.729 11761.488 13618.344
[2,] 5914.053 6782.236 7533.445 8229.629 8893.603 9536.501
##
$accuracy
[1] 1.5636089 0.6123443

15 / 20

16/20

Augmenting the observed sample with simutated time
series

lapply(yearlym1[1], sim_arimabased, Nsim=2)

$YAF2
$YAF2[[1]]
Time Series:
Start = 1972
End = 1993
Frequency = 1
[1] 3600.00 36303.86 77620.17 87135.29 118331.78 77243.15 88067.05
[8] 88870.48 59481.51 12189.03 65357.58 65908.67 122893.84 74796.77
[15] 70353.15 100206.74 128145.90 123266.24 165428.09 234896.98 212138.11
[22] 230546.28
##
$YAF2[[2]]
Time Series:
Start = 1972
End = 1993
Frequency = 1
[1] 3600.000 -9347.681 49345.161 38947.540 33268.905 53802.044
[7] 101405.223 120836.658 141418.247 166030.391 171539.163 165193.914
[13] 197562.762 205935.526 262298.229 300168.377 352400.806 391134.490
[19] 403593.677 447238.169 455087.438 492134.771

other methods:

lapply(yearlym1[1], sim_etsbased, Nsim=2)
lapply(yearlym1[1], sim_mstlbased, Nsim=2)

16 / 20

16/20

Augmenting the observed sample with simutated time
series

lapply(yearlym1[1], sim_arimabased, Nsim=2)

$YAF2
$YAF2[[1]]
Time Series:
Start = 1972
End = 1993
Frequency = 1
[1] 3600.00 36303.86 77620.17 87135.29 118331.78 77243.15 88067.05
[8] 88870.48 59481.51 12189.03 65357.58 65908.67 122893.84 74796.77
[15] 70353.15 100206.74 128145.90 123266.24 165428.09 234896.98 212138.11
[22] 230546.28
##
$YAF2[[2]]
Time Series:
Start = 1972
End = 1993
Frequency = 1
[1] 3600.000 -9347.681 49345.161 38947.540 33268.905 53802.044
[7] 101405.223 120836.658 141418.247 166030.391 171539.163 165193.914
[13] 197562.762 205935.526 262298.229 300168.377 352400.806 391134.490
[19] 403593.677 447238.169 455087.438 492134.771

other methods:

lapply(yearlym1[1], sim_etsbased, Nsim=2)
lapply(yearlym1[1], sim_mstlbased, Nsim=2)

16 / 20

17/20

Application: Distribution of time series in the PCA space

observed - M1 simulated new - M3

17 / 20

18/20

Results

18 / 20

19/20

Discussion

FFORMS: framework for forecast model selection using
meta-learning based on time series features.

FFORMS algorithm uses the knowledge of the past
performance of candidate forecast models on a collection of
time series in order to identify the best forecasting method for
a new series.

For real-time forecasting, our framework involves only the
calculation of features, the selection of a forecast method
based on the FFORMS random forest classifier, and the
calculation of the forecasts from the chosen model.

We have also introduced a simple set of time series features
that are useful in identifying the "best" forecast method for a
given time series.

19 / 20

19/20

Discussion

FFORMS: framework for forecast model selection using
meta-learning based on time series features.

FFORMS algorithm uses the knowledge of the past
performance of candidate forecast models on a collection of
time series in order to identify the best forecasting method for
a new series.

For real-time forecasting, our framework involves only the
calculation of features, the selection of a forecast method
based on the FFORMS random forest classifier, and the
calculation of the forecasts from the chosen model.

We have also introduced a simple set of time series features
that are useful in identifying the "best" forecast method for a
given time series.

19 / 20

19/20

Discussion

FFORMS: framework for forecast model selection using
meta-learning based on time series features.

FFORMS algorithm uses the knowledge of the past
performance of candidate forecast models on a collection of
time series in order to identify the best forecasting method for
a new series.

For real-time forecasting, our framework involves only the
calculation of features, the selection of a forecast method
based on the FFORMS random forest classifier, and the
calculation of the forecasts from the chosen model.

We have also introduced a simple set of time series features
that are useful in identifying the "best" forecast method for a
given time series.

19 / 20

19/20

Discussion

FFORMS: framework for forecast model selection using
meta-learning based on time series features.

FFORMS algorithm uses the knowledge of the past
performance of candidate forecast models on a collection of
time series in order to identify the best forecasting method for
a new series.

For real-time forecasting, our framework involves only the
calculation of features, the selection of a forecast method
based on the FFORMS random forest classifier, and the
calculation of the forecasts from the chosen model.

We have also introduced a simple set of time series features
that are useful in identifying the "best" forecast method for a
given time series.

19 / 20

20/20

R package: seer

available at: https://github.com/thiyangt/seer

paper: https://robjhyndman.com/publications/fforms/

Email: thiyanga.talagala@monash.edu

twitter: thiyangt

20 / 20

https://robjhyndman.com/publications/fforms/
mailto:thiyanga.talagala@monash.edu

20/20

R package: seer

available at: https://github.com/thiyangt/seer

paper: https://robjhyndman.com/publications/fforms/

Email: thiyanga.talagala@monash.edu

twitter: thiyangt

20 / 20

https://robjhyndman.com/publications/fforms/
mailto:thiyanga.talagala@monash.edu

